
Unabridged1 preface

“Il doit bien se présenter des
problèmes de Physique
mathématique pour lesquels les
causes physiques de régularité ne
suffisent pas à justifier les
hypothèses de régularité faites lors
de la mise en équation.”2

Jean Leray

This book is devoted to classical techniques in elliptic partial differential equa-
tions (PDEs), involving solutions that are not expected to be smooth. Some of
the topics that are developed are: regularity theory, maximum principles, Perron–
Remak method, sub- and supersolutions, and removable singularities. They rely
on tools from measure theory, functional analysis, and Sobolev spaces [52, 123,
132, 158, 344].

The goal is to investigate the linear Dirichlet problem involving the Laplacian:{
−∆u = µ in Ω,

u = 0 on ∂Ω,
(DP)

for an arbitrary finite Borel measure µ; the semilinear counterpart of problem
(DP) is also considered. The quantity µ(A) can be interpreted as the mass or total
charge contained in a subset A ⊂ Ω.

An example of solution is provided by the classical Green’s function with a
Dirac mass µ = δa. For any smooth bounded open set Ω, this problem has a
unique solution for any measure µ. By a solution, we mean a summable function
that verifies the equation against smooth test functions vanishing on the boundary
∂Ω. This weak formulation implicitly encodes the zero boundary condition.

We have gathered several elegant proofs which are mostly available in the
literature, but that are not necessarily widespread within the mathematical com-
munity. A surprising example is the simple argument leading to the fractional

1This unabridged version includes a detailed description of the chapter contents and will be
included in a future edition of the book.

2“There must be problems in mathematical physics for which the physical regularity causes are
not enough to justify the regularity assumptions needed to derive the equation.”
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Sobolev imbedding. We also explain the connection between trace inequalities
and the strong approximation of diffuse measures.

The reader should feel free to choose a topic according to his/her own interests.
The chapters have been conceived to be as independent as possible. We begin
with some brief historical perspective in Chapter 0 to explain how the study of
classical potential theory evolved since the 18th century to more recent nonlinear
problems dealing with measure data.

Chapters 1–3 present some introductory material intended to familiarize the
reader with the notation and basic notions that lead one to the weak formulation of
the Dirichlet problem (DP). Chapter 1 starts with the classical Poisson equation

−∆u = µ in Ω, (PE)

where we recall some properties of smooth harmonic and superharmonic functions
in connection with monotonicity formulas and maximum principles.

In Chapter 2, we consider solutions of the Poisson equation (PE) involving
measure data µ, where the equation is now understood in the sense of distributions.
We show using the Riesz representation theorem that every weak superharmonic
function satisfies the Poisson equation for some nonnegative measure. A short
review of properties of finite measures is presented in the beginning of the chapter.

Test functions with compact support are unable to detect boundary values of a
solution of the Poisson equation (PE). In Chapter 3 we explain the weak formu-
lation of the Dirichlet problem (DP) in the spirit of the work of Littman, Stampac-
chia and Weinberger [211], and prove the existence and uniqueness of solutions.
In this approach, there is little difference of whether the density µ is a summable
function or a finite measure. In contrast, as it was first pointed out by Bénilan and
Brezis [23], the semilinear counterpart{

−∆u+ g(u) = µ in Ω,

u = 0 on ∂Ω,
(SDP)

need not have a solution when µ is a Dirac mass, depending on the growth of g at
infinity.

Chapters 4–6 address fundamental questions concerning the existence, reg-
ularity and uniqueness of solutions. Typical solutions of (DP) and (SDP) with
measure data cannot be obtained by variational methods through minimization be-
cause the energy functionals that are associated to them need not be bounded from
below. Nevertheless, for better data µ – for instance in L2(Ω) – we implement the
variational approach in Chapter 4 using minimizing sequences in the Sobolev
space W 1,2

0 (Ω). The more subtle question of whether the Euler–Lagrange equa-
tion holds is also addressed. These variational solutions are important since they
are the building blocks upon which solutions with measure data can be constructed
by approximation.

We recall the definition and some basic properties of the Sobolev spaces
W 1,q

0 (Ω). Then, in Chapter 5, we prove the Sobolev regularity of the solutions
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of (DP), which physically yields the existence of a force field F = −∇u for any
finite measure µ. We also present an elegant proof by Boccardo and Gallouët [29]
of the embedding of ∇u in the weak L

N
N−1 space based on Stampacchia’s trunca-

tion argument.
In Chapter 6, we investigate maximum principles adapted to the formalism

of weak solutions. We also analyze Kato’s inequality, which allows one to com-
pare solutions of the semilinear problem (SDP). This study is pursued in Chap-
ter 7, where we prove the finiteness of the measure ∆u+ and the existence of the
weak normal derivative ∂u

∂n on ∂Ω. We explain how these properties are related to
Poincaré’s balayage method.

From this point of the book on, the notion of capacity is needed to investigate
deeper properties of the Laplacian. Why are capacities so important? Because
they help one to identify sets which are possibly undetected by solutions of (DP).
This is analogous to the fact that sets of zero Lebesgue measure are irrelevant for
summable (Lebesgue) functions. But the better the function is, the smaller the
exceptional set is, and such a smallness information can be typically described by
some capacity.

This aspect is carefully exploited in Chapter 8, where we apply some tools
from geometric measure theory to identify the correct capacity in various situa-
tions. We have gathered in Chapter 9 the more technical aspects related to max-
imal inequalities. As a first example of how to manipulate the notion of precise
representative, we prove the general formulation of Kato’s inequality when ∆u is
a measure.

To get some intuition of how big sets of zero capacity are, one can use a more
geometric concept to estimate their size, like the Hausdorff dimension. We have
adopted in Chapter 10 a deeper approach based on a quantitative comparison in
terms of the Hausdorff capacitiesHsδ. This is a first step towards the formalism of
trace inequalities that is pursued later on in Chapters 15–17.

Different questions involving (DP) require different capacities. This issue is
illustrated in Chapters 11–13 that focus on removable singularity problems. We
begin in Chapter 11 with Schwarz’s prototype removable singularity principle
for bounded harmonic functions and point singularities. We then tackle the gen-
eral problem for various families of functions. The main tools concerning the
equivalence of capacities and properties of the associated obstacle problems are
developed in Chapter 12. We also revisit the Perron–Remak method as an obsta-
cle problem. The characterization of removable sets is completed in Chapter 13,
and is based on the explicit construction of solutions of (DP) for carefully chosen
data µ.

In Chapter 14, we present a unified treatment to the question of strong ap-
proximation of diffuse measures. This is an important step towards the solution
of the semilinear problem (SDP) for some given nonlinearity g. We follow an
approach due to Mokobodzki [249] in the spirit of the Jordan decomposition the-
orem of a measure in terms of its positive and negative parts. The final answer is



vi

expressed in terms of a trace inequality.
In Chapters 15–17 we review several aspects of trace inequalities, starting

from the trace problem in Sobolev spaces, which leads one to the study of frac-
tional spaces defined in terms of Gagliardo seminorms. We then present the
Maz’ya–Adams formalism of trace inequalities, including the critical, purely geo-
metric case related to the W k,1 capacity for k integer.

Chapters 18 and 19 are devoted to measures which are diffuse with respect
to the W 1,2 capacity. These measures are characterized in Chapter 18 by the
property that they are the strong limit of measures that yield continuous potentials.
We also present an elegant functional characterization of the latter measures due to
Aizenman and Simon [9]. In Chapter 19, we prove that (SDP) has a solution for
every diffuse measure, regardless of the growth rate of g. This property completes
the picture that is initiated in Chapter 4 and illustrates the universal role played by
diffuse measures.

In Chapter 20, we take a closer look at the meaning of the zero boundary
condition in the weak formulation of the (DP), by showing that it is equivalent to
a zero average condition. We also explain why the method of sub- and supersolu-
tions holds for (SDP) under the assumption that g is merely a continuous function,
while it is commonplace to assume that g is Lipschitz continuous. These proper-
ties provide one with the existence of extremal solutions of (SDP) in the context
of the Perron–Remak method. The existence of such solutions is used in Chap-
ter 21 to characterize measures for which the semilinear Dirichlet problem has a
solution when g has power or exponential growths at infinity.

Chapter 22 is devoted to the strong maximum principle for nonnegative su-
persolutions u associated to the Schrödinger operator−∆+V , where the potential
V belongs to Lp(Ω) for some exponent 1 6 p 6 +∞. We prove that the possible
size of the set {u = 0} depends on the exponent p, and can be expressed in terms
of a capacity. This last chapter beautifully illustrates how the tools we develop
in this book can be implemented to investigate new properties of the Schrödinger
operator.

The reader will find in Appendices A and B the definitions and main prop-
erties of the Sobolev and Hausdorff capacities that are used here. The exercises
provide some complementary material, and are not necessarily intended to be
solved in a first reading; their solutions can be found in Appendix C.

This project has originated from a set of lectures given at the Universidade
Estadual de Campinas in 2005, and then from a full one-semester course in 2008.
They were influenced by the enthusiasm and captivating style of H. Brezis, who
had introduced me to these problems. In 2012, I deeply rewrote these notes, and
the resulting monograph [286] won the Concours annuel in Mathematics of the
Académie royale de Belgique. The text was then enlarged, including removable
singularity principles and the Maz’ya–Adams trace inequalities. The notion of
reduced measure, introduced with Brezis and Marcus [59] and pursued in [286],
has been incorporated in the formalism of the nonlinear Perron-Remak method.

An updated list of corrections and misprints is available in my personal web-
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site at uclouvain.be, and is based on an interface that has been kindly devel-
oped by Y. Voglaire. The reader will find in the literature some recent advances
on problems involving domains with little regularity [174, 234, 235], quasilinear
operators in Euclidean spaces [163, 208, 216] or in metric spaces [28], Dirichlet
problems involving trace measures on the boundary [224], connections to proba-
bility [118, 119, 198, 215], and trace inequalities [232, 237], that are not covered
in this book.

I am indebted to several colleagues who have helped me with their com-
ments and support: A. Ancona, L. Boccardo, P. Bousquet, D. de Figueiredo,
Th. De Pauw, B. Devyver, L. Dupaigne, A. Farina, J. Mawhin, P. Mironescu,
M. Montenegro, L. Moonens, H. Nguyen Quoc, F. Petitta, M. Pimenta, A. Pre-
soto, J.-M. Rakotoson, P. Roselli and J. Van Schaftingen. Some of my students,
in particular J. Dekeyser and N. Wilmet, have carefully read several chapters. I
especially thank H. Brezis, L. Orsina, D. Spector, L. Véron and M. Willem for
their advices, Th. Hinterman for his patience while waiting for the final version
of the manuscript and M. Zunino for the typesetting. Partial financial support has
been provided by the Fonds de la Recherche scientifique – FNRS from Belgium.

I am deeply grateful to my wife Isabelle for her encouragement. She also
bravely kept Clément and Raphaël away from my computer while I was preparing
the manuscript.
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